User Tools

Site Tools


advanced_tools:topology:homotopy

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
advanced_tools:topology:homotopy [2018/03/24 14:46]
jakobadmin ↷ Links adapted because of a move operation
advanced_tools:topology:homotopy [2018/04/12 15:33] (current)
jakobadmin [Concrete]
Line 1: Line 1:
 ====== Homotopy ====== ====== Homotopy ======
 +
 +
 +<tabbox Intuitive> ​
 +
 +<note tip>
 +Explanations in this section should contain no formulas, but instead colloquial things like you would hear them during a coffee break or at a cocktail party.
 +</​note>​
 +  ​
 +<tabbox Concrete> ​
 +
 +** Definition ** 
 +Two maps $f$ and $g$ are called **homotopic**,​ denoted by $f \tilde g$ if we can continuously transform them into each other. (See the example below).
 +
 +Source: page 14 in https://​arxiv.org/​pdf/​hep-th/​0403286.pdf
 +
 +----
 +**Example **
 +
 +--> Equivalence of $f(x)=x$ and $g(x)=$const.#​
 +
 +The two maps
 +
 +$$ \mathbb{R}^n \to  \mathbb{R}^n ​ : f(x)= x $$
 +and
 +$$ \mathbb{R}^n \to  \mathbb{R}^n ​ : g(x)= x_0 = \text{const} $$
 +
 +are homotopic, because we can define
 +
 +$$  F(x,t) = (1-t)x+tx_0 ,$$
 +
 +which continuously transforms $f(x)=F(x,​0)$ into $g(x)=F(x,​1)$.
 +
 + 
 +<--
 +
 +<tabbox Abstract> ​
 +
 +<note tip>
 +The motto in this section is: //the higher the level of abstraction,​ the better//.
 +</​note>​
  
 <tabbox Why is it interesting?> ​ <tabbox Why is it interesting?> ​
Line 41: Line 81:
 <​cite>​http://​www.dartmouth.edu/​~dbr/​topdefects.pdf</​cite>​ <​cite>​http://​www.dartmouth.edu/​~dbr/​topdefects.pdf</​cite>​
 </​blockquote>​ </​blockquote>​
- 
-<tabbox Layman> ​ 
- 
-<note tip> 
-Explanations in this section should contain no formulas, but instead colloquial things like you would hear them during a coffee break or at a cocktail party. 
-</​note>​ 
   ​   ​
-<tabbox Student> ​ 
  
-** Definition **  
-Two maps $f$ and $g$ are called **homotopic**,​ denoted by $f \tilde g$ if we can continuously transform them into each other. (See the example below). 
  
-Source: page 14 in https://​arxiv.org/​pdf/​hep-th/​0403286.pdf 
    
-<tabbox Researcher> ​ 
- 
-<note tip> 
-The motto in this section is: //the higher the level of abstraction,​ the better//. 
-</​note>​ 
- 
-  ​ 
-<tabbox Examples> ​ 
- 
---> Equivalence of $f(x)=x$ and $g(x)=$const.#​ 
- 
-The two maps 
- 
-$$ \mathbb{R}^n \to  \mathbb{R}^n ​ : f(x)= x $$ 
-and 
-$$ \mathbb{R}^n \to  \mathbb{R}^n ​ : g(x)= x_0 = \text{const} $$ 
- 
-are homotopic, because we can define 
- 
-$$  F(x,t) = (1-t)x+tx_0 ,$$ 
- 
-which continuously transforms $f(x)=F(x,​0)$ into $g(x)=F(x,​1)$. 
- 
-  
-<-- 
- 
- 
- 
-<tabbox FAQ> ​ 
-  ​ 
-<tabbox History> ​ 
  
 </​tabbox>​ </​tabbox>​
  
  
advanced_tools/topology/homotopy.1521899197.txt.gz · Last modified: 2018/03/24 13:46 (external edit)