User Tools

Site Tools


advanced_tools:group_theory:so3

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
advanced_tools:group_theory:so3 [2020/11/28 18:16]
edi [Concrete]
advanced_tools:group_theory:so3 [2023/04/17 03:28] (current)
edi [Concrete]
Line 2: Line 2:
  
 <tabbox Intuitive> ​ <tabbox Intuitive> ​
 +The Lie group $SO(3)$ describes all possible rotations of an object in 3-dimensional Euclidean space. It thus describes an important symmetry of the physical space we live in. (Other important spacetime symmetries are translations and boosts.)
  
-<note tip> +$SO(3)$ is closely related to the groups $SU(2)$ and $Sp(1)$. They are all locally isomorphic, that isthey have the same Lie algebra.
-Explanations in this section should contain no formulasbut instead colloquial things like you would hear them during a coffee break or at a cocktail party. +
-</​note>​+
   ​   ​
 <tabbox Concrete> ​ <tabbox Concrete> ​
-**Representations**+A general element of $SO(3)$ can be written as the product of three rotation matrices, one about the $x$, $y$, and $z$ axes: $R(\theta_x,​\theta_y,​\theta_z) = R_x(\theta_x) \cdot R_y(\theta_y) \cdot R_z(\theta_z)$,​ where
  
- +\begin{eqnarray} 
-[{{ :advanced_tools:group_theory:​so3reps.png?nolink |Diagram by Eduard Sackinger}}]+& & R_x(\theta_x) =  
 +\begin{pmatrix} 
 +1 & 0 & 0 \\ 0 & \cos\theta_x & -\sin\theta_x \\ 0 & \sin\theta_x & \cos\theta_x 
 +\end{pmatrix}, \label{eq:rotx} \\ 
 +& & R_y(\theta_y) =  
 +\begin{pmatrix} 
 +\cos \theta_y & 0 & \sin\theta_y \\ 0 & 1 & 0 \\ -\sin\theta_y & 0 & \cos\theta_y 
 +\end{pmatrix},​ \label{eq:roty} \\ 
 +& & R_z(\theta) =  
 +\begin{pmatrix} 
 +\cos \theta_z & -\sin \theta_z & 0 \\\sin\theta_z & \cos\theta_z & 0 \\ 0 & 0 & 1 
 +\end{pmatrix}\label{eq:​rotz} 
 +\end{eqnarray}
  
 ---- ----
  
-The diagram below shows the defining 3-dimensional representation of $SO(3)$ in its upper branch. A 5-dimensional ​representations ​of the same group is shown in the lower branch. For an explanation of this diagram ​and more representations of $SO(3)$ ​see [[https://​esackinger.wordpress.com/​|Fun with Symmetry]].+**Representations** 
 + 
 +The diagram below shows the defining ​(3-dimensionalrepresentation of $SO(3)$ in its upper branch ​and a 5-dimensional ​representation ​of the same group in its lower branch. For a more detailed ​explanation of this diagramsee [[https://​esackinger.wordpress.com/​blog/​lie-groups-and-their-representations/#​so3_3d_5d_reps|Fun with Symmetry]].
  
 [{{ :​so3_3d_5d_reps.jpg?​nolink }}] [{{ :​so3_3d_5d_reps.jpg?​nolink }}]
  
 +Instead of using 3x3 matrices for the Lie-algebra elements of the defining representation,​ we can also use 3-dimensional vectors (red box in the diagram below). Then, the Lie-algebra elements act on the representation space by means of the cross product (lower branch of the diagram). For a more detailed explanation of this diagram, see [[https://​esackinger.wordpress.com/​blog/​lie-groups-and-their-representations/#​so3_cross|Fun with Symmetry]].
 +
 +[{{ :​advanced_tools:​group_theory:​so3_cross.jpg?​nolink }}]
 +
 +
 +
 + 
    
 <tabbox Abstract> ​ <tabbox Abstract> ​
advanced_tools/group_theory/so3.1606583765.txt.gz · Last modified: 2020/11/28 18:16 by edi