User Tools

Site Tools


advanced_tools:group_theory:so3

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
advanced_tools:group_theory:so3 [2020/11/29 17:17]
edi [Intuitive]
advanced_tools:group_theory:so3 [2020/12/05 18:39]
edi [Intuitive]
Line 2: Line 2:
  
 <tabbox Intuitive> ​ <tabbox Intuitive> ​
-The Lie group $SO(3)$ describes all possible rotations in 3-dimensional Euclidean space. It thus describes an important symmetry of the physical space we live in. (Other symmetries ​of our space are translations and boosts.)+The Lie group $SO(3)$ describes all possible rotations ​of an object ​in 3-dimensional Euclidean space. It thus describes an important symmetry of the physical space we live in. (Other ​important spacetime ​symmetries are translations and boosts.)
  
 $SO(3)$ is closely related to the groups $SU(2)$ and $Sp(1)$. They are all locally isomorphic, that is, they have the same Lie algebra. $SO(3)$ is closely related to the groups $SU(2)$ and $Sp(1)$. They are all locally isomorphic, that is, they have the same Lie algebra.
   ​   ​
 <tabbox Concrete> ​ <tabbox Concrete> ​
-**Representations**+A general element of $SO(3)$ can be written as the product of three rotation matrices, one about the $x$, $y$, and $z$ axes: $R(\theta_x,​\theta_y,​\theta_z) = R_x(\theta_x) \cdot R_y(\theta_y) \cdot R_z(\theta_z)$,​ where
  
- +\begin{eqnarray} 
-[{{ :advanced_tools:group_theory:​so3reps.png?nolink |Diagram by Eduard Sackinger}}]+& & R_x(\theta_x) =  
 +\begin{pmatrix} 
 +1 & 0 & 0 \\ 0 & \cos\theta_x & -\sin\theta_x \\ 0 & \sin\theta_x & \cos\theta_x 
 +\end{pmatrix}, \label{eq:rotx} \\ 
 +& & R_y(\theta_y) =  
 +\begin{pmatrix} 
 +\cos \theta_y & 0 & \sin\theta_y \\ 0 & 1 & 0 \\ -\sin\theta_y & 0 & \cos\theta_y 
 +\end{pmatrix},​ \label{eq:roty} \\ 
 +& & R_z(\theta) =  
 +\begin{pmatrix} 
 +\cos \theta_z & -\sin \theta_z & 0 \\\sin\theta_z & \cos\theta_z & 0 \\ 0 & 0 & 1 
 +\end{pmatrix}\label{eq:​rotz} 
 +\end{eqnarray}
  
 ---- ----
  
-The diagram below shows the defining 3-dimensional representation of $SO(3)$ in its upper branch. A 5-dimensional ​representations ​of the same group is shown in the lower branch. For an explanation of this diagram and more representations of $SO(3)$ see [[https://​esackinger.wordpress.com/​|Fun with Symmetry]].+**Representations** 
 + 
 +The diagram below shows the defining ​(3-dimensionalrepresentation of $SO(3)$ in its upper branch ​and a 5-dimensional ​representation ​of the same group in its lower branch.
  
 [{{ :​so3_3d_5d_reps.jpg?​nolink }}] [{{ :​so3_3d_5d_reps.jpg?​nolink }}]
  
 +Instead of using 3x3 matrices for the Lie-algebra elements of the defining representation,​ we can also use 3-dimensional vectors (red box in the diagram below). Then, the Lie-algebra elements act on the representation space by means of the cross product (lower branch of the diagram).
 +
 +[{{ :​advanced_tools:​group_theory:​so3_cross.jpg?​nolink }}]
 +
 +For a more detailed explanation of these diagrams and additional representations of $SO(3)$, see [[https://​esackinger.wordpress.com/​|Fun with Symmetry]].
 +
 +
 +
 + 
    
 <tabbox Abstract> ​ <tabbox Abstract> ​
advanced_tools/group_theory/so3.txt · Last modified: 2023/04/17 03:28 by edi