User Tools

Site Tools


advanced_tools:group_theory:representation_theory:adjoint_representation

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Last revision Both sides next revision
advanced_tools:group_theory:representation_theory:adjoint_representation [2020/11/29 16:24]
edi [Intuitive]
advanced_tools:group_theory:representation_theory:adjoint_representation [2020/11/29 16:59]
edi [Concrete]
Line 9: Line 9:
 <tabbox Concrete> ​ <tabbox Concrete> ​
   * For a detailed discussion, see [[http://​jakobschwichtenberg.com/​adjoint-representation/​|What’s so special about the adjoint representation of a Lie group?]] by J. Schwichtenberg   * For a detailed discussion, see [[http://​jakobschwichtenberg.com/​adjoint-representation/​|What’s so special about the adjoint representation of a Lie group?]] by J. Schwichtenberg
- 
  
 ---- ----
  
-[{{ :​advanced_tools:​group_theory:​representation_theory:​adjointaction.png?​nolink ​|Diagram by Eduard Sackinger}}] +**Example** 
- + 
 +The diagram below shows the defining representation of $SU(2)$ in its upper branch. To construct the adjoint representation,​ we use the Lie algebra as the representation space, as shown in the lower branch (red arrows). The group elements act on this space like $L'​=ULU^{-1}$ and the Lie-algebra elements like $L'​=[J,​L]$. It is possible to rewrite this representation such that it acts on 3-dimensional vectors (as opposed to 3x3 matrices) by regular matrix-vector multiplication. 
 + 
 +[{{ :​advanced_tools:​group_theory:​representation_theory:​su2_adjoint.jpg?nolink }}] 
 + 
 +For a more detailed explanation of this diagram as well as adjoint representations of other groups, see [[https://​esackinger.wordpress.com/​|Fun with Symmetry]]. ​
 <tabbox Abstract> ​ <tabbox Abstract> ​
  
advanced_tools/group_theory/representation_theory/adjoint_representation.txt · Last modified: 2020/12/26 22:49 by edi