User Tools

Site Tools


advanced_tools:group_theory:quotient_group

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
advanced_tools:group_theory:quotient_group [2017/12/17 13:01]
jakobadmin [Examples]
advanced_tools:group_theory:quotient_group [2017/12/17 13:01]
jakobadmin
Line 40: Line 40:
 **Definition:​** **Definition:​**
  
-For a group $G$ and a normal subgroup of it $N$, we call +For a group $G$ and a [[advanced_tools:​group_theory:​subgroup|normal subgroup]] of it $N$, we call 
  
 $$ G/​N=\{gN:​g\in G\} $$  $$ G/​N=\{gN:​g\in G\} $$ 
Line 136: Line 136:
 In this sense, when we mod out $SO(2)$ rotations from $SO(3)$, we can identify elements of the resulting $SO(3)/​SO(2)$ with elements of $S^2$. Without the $SO(2)$ rotations, we have a one-to-one correspondence between the remaining rotations ( = elements of $SO(3)/​SO(2)$) and the two-sphere $S^2$. To every point on $S^2$ there is a unique element of $SO(3)/​SO(2)$,​ namely the rotation that rotates, for example, the north pole into this point. ​ In this sense, when we mod out $SO(2)$ rotations from $SO(3)$, we can identify elements of the resulting $SO(3)/​SO(2)$ with elements of $S^2$. Without the $SO(2)$ rotations, we have a one-to-one correspondence between the remaining rotations ( = elements of $SO(3)/​SO(2)$) and the two-sphere $S^2$. To every point on $S^2$ there is a unique element of $SO(3)/​SO(2)$,​ namely the rotation that rotates, for example, the north pole into this point. ​
  
-Take note that $S^2$ is not a Lie group, because $SO(2)$ is not a [[group_theory:notions:subgroups#​normal_subgroups|normal subgroup]] of $SO(3)$.+Take note that $S^2$ is not a Lie group, because $SO(2)$ is not a [[advanced_tools:group_theory:subgroup|normal subgroup]] of $SO(3)$.
  
 In general, the quotient space $SO(n)/​SO(n-1)$ is $S^{n-1}$ (= the $n-1$-sphere). In general, the quotient space $SO(n)/​SO(n-1)$ is $S^{n-1}$ (= the $n-1$-sphere).
advanced_tools/group_theory/quotient_group.txt · Last modified: 2023/07/29 01:41 by 38.114.114.173