User Tools

Site Tools


advanced_tools:group_theory:lorentz_group

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
advanced_tools:group_theory:lorentz_group [2018/04/06 15:43]
jakobadmin [Concrete]
advanced_tools:group_theory:lorentz_group [2023/05/20 19:32] (current)
edi [Abstract]
Line 9: Line 9:
   ​   ​
 <tabbox Concrete> ​ <tabbox Concrete> ​
-It follows from the postulates of [[theories:​special_relativity|special relativity]] that+**Definition of the Lorentz transformations** 
 + 
 +It follows from the postulates of [[models:​special_relativity|special relativity]] that
 $d s^2 = \eta^{\mu \nu} dx_\mu dx_\nu$ stays exactly the same in all inertial frames of reference: $d s^2 = \eta^{\mu \nu} dx_\mu dx_\nu$ stays exactly the same in all inertial frames of reference:
-\begin{equation} ds'^2 = dx'​_\mu dx'​_\nu \eta^{\mu\nu} = ds^2 = dx_\mu dx_\nu \eta^{\mu\nu} ​.\end{equation}+\begin{equation} ds'^2 = dx'​_\mu dx'​_\nu \eta^{\mu\nu} = ds^2 = dx_\mu dx_\nu \eta^{\mu\nu} ​\, ,\end{equation} 
 +where $\eta^{\mu\nu}$ is the [[advanced_tools:​minkowski_metric|Minkowski metric]]. ​
  
 We denote a generic transformation that takes us to another frame with $\Lambda$ and the transformed coordinates $dx_\mu'​$:​ We denote a generic transformation that takes us to another frame with $\Lambda$ and the transformed coordinates $dx_\mu'​$:​
Line 29: Line 32:
 \begin{equation} \label{eq:​lorentztrafodefequation} \eta = \Lambda^T \eta \Lambda \end{equation} \begin{equation} \label{eq:​lorentztrafodefequation} \eta = \Lambda^T \eta \Lambda \end{equation}
  
-This is the condition that transformations $\Lambda$ which take us from one frame to another allowed frames of reference must fulfill. Such transformations are called Lorentz transformations and the equation can be taken as a definition of Lorentz transformations.+This is the condition that transformations $\Lambda$ which take us from one frame to another allowed frames of reference must fulfill. Such transformations are called Lorentz transformations and the equation can be taken as a definition of Lorentz transformations. ​Formulated differently,​ the Lorentz transformations are defined as all those transformations that leave the Minkowski metric unchanged.  
 + 
 +---- 
 + 
 +**Explicit form of the Lorentz transformations** 
 + 
 +__Rotations__ 
 +First, we note that the rotation matrices of 3-dimensional Euclidean space that only act on space and not on time, fulfil the defining condition. This follows because the spatial part ($\mu=1,​2,​3$) of the Minkowski metric is proportional to the $3 \times 3$ identity matrix. Thus for transformations that only modify space, we get from the condition $\eta = \Lambda^T \eta \Lambda$ that 
 + 
 +\[-R^T I_{3 \times 3} R =- R^T R \stackrel{!}{=} -  I_{3 \times 3}  
 +\] 
 +\[\rightarrow R^T I_{3 \times 3} R =R^T R \stackrel{!}{=} ​  I_{3 \times 3} . 
 +\] 
 +This is exactly the defining condition of the group $O(3)$. Together with the condition 
 +\[ \det(\Lambda) \stackrel{!}{=} 1 
 +\] 
 +these are the defining conditions of the group $SO(3)$, which describes three-dimensional rotations. We conclude that one type of Lorentz transformation is given by 
 +\[ \Lambda_{\mathrm{rot }}= \begin{pmatrix} 1 &  \\ & R_{3 \times 3} \end{pmatrix} 
 +\] 
 +with the usual rotation matrices ​ $R_{3 \times 3}$: 
 + 
 +\begin{eqnarray} 
 +& & R_x(\phi) =  
 +\begin{pmatrix} 
 +1 & 0 & 0 \\ 0 & \cos\phi & \sin\phi \\ 0 & -\sin\phi & \cos\phi 
 +\end{pmatrix} \label{eq:​rotx} \\ 
 +& & R_y(\psi) =  
 +\begin{pmatrix} 
 +\cos \psi & 0 & -\sin\psi \\ 0 & 1 & 0 \\ \sin\psi & 0 & \cos\psi 
 +\end{pmatrix} \label{eq:​roty} \\ 
 +& & R_z(\theta) =  
 +\begin{pmatrix} 
 +\cos \theta & \sin \theta & 0 \\-\sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 
 +\end{pmatrix} \label{eq:​rotz} 
 +\end{eqnarray} 
 + 
 +__Boosts__ 
 + 
 +To investigate all other transformations which transform time //and// space we start, as usual in Lie theory, with an infinitesimal transformation 
 +\begin{equation} ​ \Lambda^{\mu}_{\rho} \approx \delta^{\mu}_{\rho}+ \epsilon K^{\mu}_{\rho}. \end{equation} 
 +We put this now into the defining condition $\eta = \Lambda^T \eta \Lambda$ and get 
 +\[\Lambda^{\mu}_{\rho} \eta_{\mu \nu} \Lambda^{\nu}_{\sigma} ​ \stackrel{!}{=} ​  ​\eta_{\rho \sigma} 
 +\] 
 +\[ \rightarrow ( \delta^{\mu}_{\rho}+ \epsilon K^{\mu}_{\rho} ) \eta_{\mu \nu} (\delta^{\nu}_{\sigma}+ \epsilon K^{\nu}_{\sigma}) ​ \stackrel{!}{=} ​  ​\eta_{\rho \sigma} ​  
 +\] 
 +\[ \rightarrow \eta_{\rho \sigma} + \epsilon K^{\mu}_{\rho}\eta_{\mu \sigma} + \epsilon K^{\nu}_{\sigma} \eta_{\rho \nu} + \underbrace{\epsilon^2 ​  ​K^{\mu}_{\rho}\eta_{\mu \nu}  K^{\nu}_{\sigma}}_{ \approx 0 \text{ because } \epsilon \text{ is infinitesimal }\rightarrow \epsilon^2 \approx 0} = \eta_{\rho \sigma} 
 +\] 
 +\begin{equation}\rightarrow ​ K^{\mu}_{\rho}\eta_{\mu \sigma} +  K^{\nu}_{\sigma} \eta_{\rho \nu} = 0     ​\end{equation} 
 + 
 +or in matrix notation 
 + 
 +\begin{equation} \label{eq:​boost4d} K^T \eta = - \eta K. \end{equation} 
 + 
 +A transformation that fulfill this equation is called a boost. A boost takes us from one frame to another frame that moves with a different velocity. Explcitly, such transformations can be described by 
 + 
 +\begin{equation} \Lambda_x =  \begin{pmatrix} 
 +  \cosh(\phi)&​i\sinh(\phi) ​ & 0 & 0\\ i\sinh(\phi)&​ \cosh(\phi) &0 &0 \\ 
 +  0&​0&​1&​0 \\ 0&​0&​0&​1 
 + ​\end{pmatrix} ​ \end{equation} 
 + 
 +\begin{equation} \Lambda_y =  \begin{pmatrix} 
 +  \cosh(\phi)&​ 0 & i\sinh(\phi) & 0\\ 0 & 1 &0 &​0 ​  \\ 
 +  i\sinh(\phi)&​ 0 &  \cosh(\phi) &​0 ​ \\ 0&​0&​0&​1 
 + ​\end{pmatrix} ​ \end{equation} 
 +  
 +\begin{equation} \label{eq:​boostexplicitz-direction} \Lambda_z =  \begin{pmatrix} 
 +  \cosh(\phi)&​0 ​ & 0 & i\sinh(\phi)\\ 0 &1 &0 &0 \\ 
 +  0&​0&​1&​0 \\ i\sinh(\phi)&​ 0 &0 &​\cosh(\phi) 
 + ​\end{pmatrix}. ​ \end{equation}
 <tabbox Abstract> ​ <tabbox Abstract> ​
  
Line 125: Line 196:
 See also, section 5.5 at page 79 in http://​www.math.columbia.edu/​~woit/​QM/​qmbook.pdf See also, section 5.5 at page 79 in http://​www.math.columbia.edu/​~woit/​QM/​qmbook.pdf
  </​WRAP>​  </​WRAP>​
 +
 +----
 +
 +**Graphical Summary**
 +
 +The picture below shows the weight diagrams of some important irreducible representations of the (double cover of the) Lorentz group (right) and, for comparison, some irreducible representations of $SU(2)$ (left). For a more detailed explanation of this picture see [[https://​esackinger.wordpress.com/​blog/​lie-groups-and-their-representations/#​lorentz_irreps|Fun with Symmetry]].
 +
 +[{{ :​advanced_tools:​group_theory:​representation_theory:​lorentz_irreps.jpg?​nolink }}]
 +
 +The following diagram illustrates the relationship between the groups of rotation $O(3)$ and $O(4)$, in 3D and 4D Euclidean space, respectively,​ and the Lorentz group $O(1,3)$. For a more detailed explanation of this diagram see [[https://​esackinger.wordpress.com/​blog/​lie-groups-and-their-representations/#​rotation_to_lorentz|Fun with Symmetry]].
 +
 +[{{ :​advanced_tools:​group_theory:​representation_theory:​rotation_to_lorentz.jpg?​nolink }}]
 +
 +
 <tabbox Why is it interesting?> ​ <tabbox Why is it interesting?> ​
  
advanced_tools/group_theory/lorentz_group.1523022226.txt.gz · Last modified: 2018/04/06 13:43 (external edit)