User Tools

Site Tools


advanced_tools:gauge_symmetry:stueckelberg_trick

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
advanced_tools:gauge_symmetry:stueckelberg_trick [2017/11/08 14:37]
jakobadmin [Student]
advanced_tools:gauge_symmetry:stueckelberg_trick [2022/06/07 10:04] (current)
192.84.145.254 fixed aligns
Line 18: Line 18:
 This lagrangian is not gauge invariant, but gauge invariance can be restored by coupling in new fields, $\pi^{a}(x)$,​ with $a\in\{1,​\ldots,​N^2-1\}$,​ i.e. , one field for each generator of $SU(N)$. ​ In order to insert the $\pi^{a}(x)$'​s appropriately,​ one first performs a gauge transformation with $\pi^{a}(x)$ as the gauge parameter, This lagrangian is not gauge invariant, but gauge invariance can be restored by coupling in new fields, $\pi^{a}(x)$,​ with $a\in\{1,​\ldots,​N^2-1\}$,​ i.e. , one field for each generator of $SU(N)$. ​ In order to insert the $\pi^{a}(x)$'​s appropriately,​ one first performs a gauge transformation with $\pi^{a}(x)$ as the gauge parameter,
 \begin{align} \begin{align}
-A_{\mu}&​\longmapsto U^\dagger(\pi)(A_{\mu}+\partial_{\mu})U(\pi)\equiv A'​_{\mu}+A_{\mu}&​\longmapsto U^\dagger(\pi)(A_{\mu}+\partial_{\mu})U(\pi)\equiv A'​_{\mu}\\
 F_{\mu\nu}&​\longmapsto U^\dagger(\pi) F_{\mu\nu}U(\pi)\equiv F'​_{\mu\nu}\label{StuckelbergTransformationExample} F_{\mu\nu}&​\longmapsto U^\dagger(\pi) F_{\mu\nu}U(\pi)\equiv F'​_{\mu\nu}\label{StuckelbergTransformationExample}
 \end{align} \end{align}
 where $U(\pi)=e^{\pi^{a}(x)T_{a}}$ is an element of $SU(N)$. ​ We then define a new lagrangian $\mathcal{L}'​$ by taking \eqref{MassiveYMforStuckelbergSection} and replacing $A_{\mu}\mapsto A_{\mu}'​$ and $F_{\mu\nu}\mapsto F_{\mu\nu}'​$. ​ That is, where $U(\pi)=e^{\pi^{a}(x)T_{a}}$ is an element of $SU(N)$. ​ We then define a new lagrangian $\mathcal{L}'​$ by taking \eqref{MassiveYMforStuckelbergSection} and replacing $A_{\mu}\mapsto A_{\mu}'​$ and $F_{\mu\nu}\mapsto F_{\mu\nu}'​$. ​ That is,
 \begin{align} \begin{align}
-\mathcal{L}'&​=-\frac{1}{4g^{2}}{\rm tr}F'​_{\mu\nu}F'​^{\mu\nu}-\frac{m^{2}}{2g^{2}}{\rm tr}A'​_{\mu}A'​^{\nu}+\mathcal{L}'&​=-\frac{1}{4g^{2}}{\rm tr}F'​_{\mu\nu}F'​^{\mu\nu}-\frac{m^{2}}{2g^{2}}{\rm tr}A'​_{\mu}A'​^{\nu}\\
 &​=\!-\frac{1}{4g^{2}}\!{\rm tr}F_{\mu\nu}F^{\mu\nu}\!-\!\frac{m^{2}}{2g^{2}} {\rm tr}D_{\mu}U(\pi)D^{\mu}U^\dagger(\pi)~,​ \label{StuckelbergedLagrangianEx} &​=\!-\frac{1}{4g^{2}}\!{\rm tr}F_{\mu\nu}F^{\mu\nu}\!-\!\frac{m^{2}}{2g^{2}} {\rm tr}D_{\mu}U(\pi)D^{\mu}U^\dagger(\pi)~,​ \label{StuckelbergedLagrangianEx}
 \end{align} \end{align}
 where $D_{\mu}U(\pi)= \partial_{\mu}U(\pi)+A_{\mu}U(\pi)$ is the gauge covariant derivative of $U(\pi)$. ​ The lagrangian $\mathcal{L}'​$ then enjoys a gauge symmetry under which we simultaneously change where $D_{\mu}U(\pi)= \partial_{\mu}U(\pi)+A_{\mu}U(\pi)$ is the gauge covariant derivative of $U(\pi)$. ​ The lagrangian $\mathcal{L}'​$ then enjoys a gauge symmetry under which we simultaneously change
 \begin{align} \begin{align}
-A_{\mu}&​\longmapsto V^\dagger(x)(A_{\mu}+ {1}\partial_{\mu})V(x)+A_{\mu}&​\longmapsto V^\dagger(x)(A_{\mu}+ {1}\partial_{\mu})V(x) ​\\
 U(\pi)&​\longmapsto V^\dagger(x)U(\pi)~,​ U(\pi)&​\longmapsto V^\dagger(x)U(\pi)~,​
 \end{align} \end{align}
advanced_tools/gauge_symmetry/stueckelberg_trick.txt ยท Last modified: 2022/06/07 10:04 by 192.84.145.254