User Tools

Site Tools


advanced_notions:topological_defects

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
advanced_notions:topological_defects [2017/12/20 11:09]
jakobadmin [Layman]
advanced_notions:topological_defects [2017/12/20 11:10]
jakobadmin [Student]
Line 38: Line 38:
  
   * A great introduction is http://​www.dartmouth.edu/​~dbr/​topdefects.pdf and    * A great introduction is http://​www.dartmouth.edu/​~dbr/​topdefects.pdf and 
-  * see also http://​www.lassp.cornell.edu/​sethna/​pubPDF/​OrderParameters.pdf+  * see also http://​www.lassp.cornell.edu/​sethna/​pubPDF/​OrderParameters.pdf ​and 
 +  * [[https://​www.scribd.com/​document/​85012149/​From-Monopoles-to-Textures-A-Survey-of-Topological-Defects-in-Cosmological-Quantum-Field-Theory|From Monopoles to Textures]] by Damian Sowinski
  
  
Line 50: Line 51:
   * If the second homotopy class of $G/H$ is non-trivial,​ we get a **zero-dimensional** topological defect, a "a pointlike singularity"​ that is called a **[[advanced_notions:​topological_defects:​magnetic_monopoles|monopole]]**. ​ An example is when a scalar potential with $SU(2)$ symmetry breaks to $U(1)$. The vacuum manifold is $SU(2)/​U(1)\simeq S^2$.   * If the second homotopy class of $G/H$ is non-trivial,​ we get a **zero-dimensional** topological defect, a "a pointlike singularity"​ that is called a **[[advanced_notions:​topological_defects:​magnetic_monopoles|monopole]]**. ​ An example is when a scalar potential with $SU(2)$ symmetry breaks to $U(1)$. The vacuum manifold is $SU(2)/​U(1)\simeq S^2$.
   * If the third homotopy class of $G/H$ is non-trivial,​ we get so called “**textures**”. In fact the notion "​textures"​ is more popular among condensed matter physicists and particle physicists call this kind of topological defect **Skyrmions**. ​ "If space is a three sphere, we can have a texture wrapped around the entire three sphere and this would give a static solution in the model."​ ([[https://​arxiv.org/​pdf/​hep-ph/​9710292.pdf|source]]). An example is when a scalar potential with $SU(2)$ symmetry breaks to the trivial subgroup $1$. The vacuum manifold is $SU(2)/1 =SU(2) \simeq S^3$.   * If the third homotopy class of $G/H$ is non-trivial,​ we get so called “**textures**”. In fact the notion "​textures"​ is more popular among condensed matter physicists and particle physicists call this kind of topological defect **Skyrmions**. ​ "If space is a three sphere, we can have a texture wrapped around the entire three sphere and this would give a static solution in the model."​ ([[https://​arxiv.org/​pdf/​hep-ph/​9710292.pdf|source]]). An example is when a scalar potential with $SU(2)$ symmetry breaks to the trivial subgroup $1$. The vacuum manifold is $SU(2)/1 =SU(2) \simeq S^3$.
 +
 +----
 +
 +**Recommended Resources:​**
 +
  
   ​   ​
advanced_notions/topological_defects.txt · Last modified: 2017/12/20 11:11 by jakobadmin