User Tools

Site Tools


advanced_notions:thomas_precession

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
advanced_notions:thomas_precession [2019/06/10 10:13]
jakobadmin [Abstract]
advanced_notions:thomas_precession [2019/06/10 10:15]
jakobadmin [Abstract]
Line 16: Line 16:
  
    
 +<​blockquote>​To get the Lorentz transformation mapping from frame 1 to 3 directly, we compose boosts:
  
 +$$\exp\left(\frac{a_y}{c} \,\delta t\, K_y + \frac{a_x}{c} \,\delta t\, K_x\right) \exp\left(\frac{v_x}{c}\,​K_x\right) = \exp\left(\frac{v_x}{c}\,​K_x + \frac{a_x}{c}\,​\delta t\,K_x + \frac{a_y}{c}\,​\delta t\, K_y + \frac{a_y\,​v_x}{2\,​c^2}\,​[K_y,​\,​K_x]\,​\delta t + \cdots\right)\tag{1}$$ ​
 +
 +by the Dynkin formula version of the Baker-Campbell-Hausdorff theorem. From the commutation relationships for the Lorentz group we get $[K_y,​\,​K_x] = i\,J_z$, so that $\frac{a_y\,​v_x}{2\,​c^2}\,​[K_y,​\,​K_x]\,​\delta t$ corresponds to a rotation about the $z$ axis of $a_y\,​v_x\,​\delta t / (2\,c^2)$ radians (here, somewhat obviously $J_z,​\,​J_y,​\,​J_z$ are "​generators of rotations",​ *i.e.* tangents to rotations about the $x,\,y,\,z$ axes at the identity, respectively,​ whilst $J_z,​\,​J_y,​\,​J_z$ are "​generators"​ of boosts).<​cite>​https://​physics.stackexchange.com/​a/​99459/​37286</​cite></​blockquote>​
 <tabbox Why is it interesting?> ​   <tabbox Why is it interesting?> ​  
  
advanced_notions/thomas_precession.txt ยท Last modified: 2019/06/10 10:20 by jakobadmin