User Tools

Site Tools


advanced_notions:poisson_bracket

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
advanced_notions:poisson_bracket [2018/04/08 13:20]
jakobadmin [Concrete]
advanced_notions:poisson_bracket [2018/12/18 14:00] (current)
jakobadmin
Line 9: Line 9:
   ​   ​
 <tabbox Concrete> ​ <tabbox Concrete> ​
 +
  
 For two sets of canonical coordinates For two sets of canonical coordinates
Line 37: Line 38:
 $$ $$
 <-- <--
- 
-The Poisson bracket satisfied 
- 
-$$ \left\{ F G, H \right\} = F \left\{ G, H \right\} + G \left\{ F, H \right\} .$$ 
- 
-which looks like the Leibniz rule in calculus. This suggests that we interpret the Poisson bracket as derivative of the first argument with respect to the second argument. ​ 
  
  
Line 73: Line 68:
 This is one way to make the difference between quantum and classical mechanics explicit: This is one way to make the difference between quantum and classical mechanics explicit:
  
-$$  \text{Commutator}\quad [\hat{f},​\hat{g}] \quad\longleftrightarrow\quad\text{Poisson bracket}\quad \{f,g\}$$+$$ \text{Commutator}\quad [\hat{f},​\hat{g}] \quad\longleftrightarrow\quad\text{Poisson bracket}\quad \{f,g\}$$ 
 + 
 +---- 
 + 
 +We can calculate what happens when we put the canonical coordinates and momenta themselves into the Poisson bracket: 
 + 
 +\begin{align} 
 +\{ q_i , q_j\} &=0 \notag \\ 
 +\{ p_i , p_j \} &= 0 \notag \\ 
 +\{ q_i , p_j \} &= \delta_{ij}\notag 
 +\end{align} 
 + 
 +which is extremely similar to the [[formulas:​canonical_commutation_relations|canonical commutation relations]] in quantum mechanics:​ 
 + 
 +\begin{align} 
 +[ \hat{q}_i , \hat{q}_j] &=0 \notag \\ 
 +[ \hat{p}_i , \hat{p}_j ] &= 0 \notag \\ 
 +[ \hat{q}_i , \hat{p}_j ] &= i \hbar\notag 
 +\end{align} 
 + 
 +In words both sets of equations state that $p_i$ generates infinitesimal translations of $q_i$.  
 + 
 +---- 
 + 
 + 
 +The Poisson bracket satisfied 
 + 
 +$$ \left\{ F G, H \right\} = F \left\{ G, H \right\} + G \left\{ F, H \right\} .$$ 
 + 
 +which looks like the Leibniz rule in calculus. This suggests that we interpret the Poisson bracket as derivative of the first argument with respect to the second argument. ​
  
  
Line 89: Line 113:
 ---- ----
  
-Any system in [[theories:​classical_mechanics|Classical Mechanics]] can be thought of rigorously as a [[basic_tools:​phase_space|phase space]] which is more precisely formalized as a [[advanced_tools:​symplectic_structure|symplectic]] manifold $(X,ω)$, or even more precisely a Poisson Manifold. In words, this means that the algebra of all functions on our phase space $X$, is canonically equipped with a Lie bracket: the Poisson bracket. Formulated differently,​ dynamics in mechanics are modeled on the cotangent bundle $T^∗M$ which has a canonical symplectic structure.+Any system in [[theories:​classical_mechanics:newtonian|Classical Mechanics]] can be thought of rigorously as a [[basic_tools:​phase_space|phase space]] which is more precisely formalized as a [[advanced_tools:​symplectic_structure|symplectic]] manifold $(X,ω)$, or even more precisely a Poisson Manifold. In words, this means that the algebra of all functions on our phase space $X$, is canonically equipped with a Lie bracket: the Poisson bracket. Formulated differently,​ dynamics in mechanics are modeled on the cotangent bundle $T^∗M$ which has a canonical symplectic structure.
  
  
Line 100: Line 124:
  
 <tabbox Why is it interesting?> ​ <tabbox Why is it interesting?> ​
-Poisson brackets are necessary to describe the time evolution of observables in the [[frameworks:​hamiltonian_formalism|Hamiltonian formulation]] of [[theories:​classical_mechanics|classical mechanics]]. ​ Formulated differently,​ the Poisson bracket controls the dynamics in classical mechanics. ​+Poisson brackets are necessary to describe the time evolution of observables in the [[formalisms:​hamiltonian_formalism|Hamiltonian formulation]] of [[theories:​classical_mechanics:newtonian|classical mechanics]]. ​ Formulated differently,​ the Poisson bracket controls the dynamics in classical mechanics. ​ 
  
 +Poisson brackets play more or less the same role in [[theories:​classical_mechanics:​newtonian|classical mechanics]] that [[formulas:​canonical_commutation_relations|commutators]] do in [[theories:​quantum_mechanics:​canonical|quantum mechanics]]. ​
  
-Poisson brackets ​play more or less the same role in [[theories:classical_mechanics|classical mechanics]] that [[equations:​canonical_commutation_relations|commutators]] do in [[theories:​quantum_mechanics|quantum ​mechanics]]+Poisson brackets ​are also important ​in thermodynamics,​ see https://​johncarlosbaez.wordpress.com/​2012/​01/​23/​classical-mechanics-versus-thermodynamics-part-2/​ and M. J. Peterson, Analogy between thermodynamics and mechanics, American Journal of Physics 47 (1979), 488–490.
  
 <tabbox FAQ> <tabbox FAQ>
advanced_notions/poisson_bracket.1523186445.txt.gz · Last modified: 2018/04/08 11:20 (external edit)