User Tools

Site Tools


advanced_notions:poisson_bracket

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
advanced_notions:poisson_bracket [2018/04/08 14:15]
jakobadmin ↷ Links adapted because of a move operation
advanced_notions:poisson_bracket [2018/05/13 07:18]
jakobadmin ↷ Links adapted because of a move operation
Line 9: Line 9:
   ​   ​
 <tabbox Concrete> ​ <tabbox Concrete> ​
-that +
  
 For two sets of canonical coordinates For two sets of canonical coordinates
Line 80: Line 80:
 \end{align} \end{align}
  
-which is extremely similar to the [[equations:​canonical_commutation_relations|canonical commutation relations]] in quantum mechanics:+which is extremely similar to the [[formulas:​canonical_commutation_relations|canonical commutation relations]] in quantum mechanics:
  
 \begin{align} \begin{align}
Line 113: Line 113:
 ---- ----
  
-Any system in [[theories:​classical_mechanics|Classical Mechanics]] can be thought of rigorously as a [[basic_tools:​phase_space|phase space]] which is more precisely formalized as a [[advanced_tools:​symplectic_structure|symplectic]] manifold $(X,ω)$, or even more precisely a Poisson Manifold. In words, this means that the algebra of all functions on our phase space $X$, is canonically equipped with a Lie bracket: the Poisson bracket. Formulated differently,​ dynamics in mechanics are modeled on the cotangent bundle $T^∗M$ which has a canonical symplectic structure.+Any system in [[theories:​classical_mechanics:newtonian|Classical Mechanics]] can be thought of rigorously as a [[basic_tools:​phase_space|phase space]] which is more precisely formalized as a [[advanced_tools:​symplectic_structure|symplectic]] manifold $(X,ω)$, or even more precisely a Poisson Manifold. In words, this means that the algebra of all functions on our phase space $X$, is canonically equipped with a Lie bracket: the Poisson bracket. Formulated differently,​ dynamics in mechanics are modeled on the cotangent bundle $T^∗M$ which has a canonical symplectic structure.
  
  
Line 124: Line 124:
  
 <tabbox Why is it interesting?> ​ <tabbox Why is it interesting?> ​
-Poisson brackets are necessary to describe the time evolution of observables in the [[formalisms:​hamiltonian_formalism|Hamiltonian formulation]] of [[theories:​classical_mechanics|classical mechanics]]. ​ Formulated differently,​ the Poisson bracket controls the dynamics in classical mechanics. ​+Poisson brackets are necessary to describe the time evolution of observables in the [[formalisms:​hamiltonian_formalism|Hamiltonian formulation]] of [[theories:​classical_mechanics:newtonian|classical mechanics]]. ​ Formulated differently,​ the Poisson bracket controls the dynamics in classical mechanics. ​ 
  
 +Poisson brackets play more or less the same role in [[theories:​classical_mechanics:​newtonian|classical mechanics]] that [[formulas:​canonical_commutation_relations|commutators]] do in [[theories:​quantum_mechanics:​canonical|quantum mechanics]]. ​
  
-Poisson brackets ​play more or less the same role in [[theories:classical_mechanics|classical mechanics]] that [[equations:​canonical_commutation_relations|commutators]] do in [[theories:​quantum_mechanics|quantum ​mechanics]]+Poisson brackets ​are also important ​in thermodynamics,​ see https://​johncarlosbaez.wordpress.com/​2012/​01/​23/​classical-mechanics-versus-thermodynamics-part-2/​ and M. J. Peterson, Analogy between thermodynamics and mechanics, American Journal of Physics 47 (1979), 488–490.
  
 <tabbox FAQ> <tabbox FAQ>
advanced_notions/poisson_bracket.txt · Last modified: 2018/12/18 13:00 by jakobadmin