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The path integral formulation of quantum mechanics has an advantage over the canonical quan-
tization approach, namely that it provides a more physical intuition to how quantum mechanics
arise via summing over paths. Nevertheless, it is mathematically challenging to make sense of path
integral. In addition, the [canonical] commutation relation [q̂, p̂] = i~ is not apparent in the path
integral formulation. Since the commutation relation is central to quantum mechanics, it has to be
hidden somewhere within the path integration. This note aims to explain this important issue that
nevertheless is not discussed in most textbooks.

“There are in this world optimists who feel
that any symbol that starts off with an inte-
gral sign must necessarily denote something
that will have every property that they should
like an integral to possess. This is of course
quite annoying to us rigorous mathemati-
cians; what is even more annoying is that by
doing so they often come up with the right
answer.” - E. J. McShane [1]

I. INTRODUCTION: A TOURIST GUIDE TO
PATH INTEGRAL

The [Feynman] path integral formulation to quantum
mechanics, and subsequently to quantum field theory,
can be found in many standard textbooks [2, 3], and so we
will not explain it in details. The essential ideas is nicely
discussed in [4]: Recall the famous double-slit experiment
in quantum mechanics, in which a beam of electrons is
fired through two slits. If the electrons are classical par-
ticles like tiny balls, then we should expect the screen to
have two bright strips corresponding to where the elec-
trons hit, i.e. we would not expect interference pattern,
which is a characteristic of wave. However, when the ex-
periment is conducted, we observe interference pattern
– electrons do have wave properties! It is not that the
electrons are interfering with each other and thus some-
how cause the interference pattern, since by firing the
electrons one at a time, interference pattern still build
up gradually as more and more electrons go through the
slits. Quantum mechanically, we often say that the wave
function will be the sum of two possible states: one that
passes through slit A and one that passes through slit
B, and the wave function is in a superposition of states.
However there is no reason why we should stop at two
slits, we could have three, and then the wave function
will be the sum of three possible states. We can also
have more than one screen. Therefore we could have say,
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first screen with 2 slits, second screen with 3 slits etc.
and stack them all together. That is, we have to con-
sider all the probabilities of particle passing through the
i-th slit of the k-th screen. Now imagine that we increase
the number of screens and the number of slits and con-
tinue to do so in the limit towards infinity. In the limit
with infinitely many slits, the slits are not there any-
more! Therefore we reached a seemingly absurd [what
isn’t in quantum mechanics?] conclusion that even in
empty space without physical screens, we have to con-
sider the probabilities of the particles taking all possible
paths from one point to another instead of just the classi-
cal path [which is the unique path determined by solving
differential equation of the Newtonian equation of mo-
tion given some initial condition.] As Zee described it,
this is almost Zen.

Although the path integral formulation is made pre-
cise by Richard Feynman [5], who also showed that the
Schrödinger’s equation and the commutation relation can
be recovered from path integral formulation, the formu-
lation itself was first invented by Paul Dirac [6], who first
formulated the amplitude of a particle to propagate from
a point qi to another point qf in time t = tf − ti by〈

qf

∣∣∣e−iĤt∣∣∣ qi〉 =

∫
Dq(t)ei

∫ T
0
dtL(q,q̇), (1)

where Ĥ is the Hamiltonian operator and L is the [clas-
sical] Lagrangian. The expression on the left hand side
is called the propagator

K(qi, qf ; t) =
〈
qf

∣∣∣e−itĤ/~∣∣∣ qi〉 . (2)

II. A MATHEMATICIAN’S LAMENT

Before we review the path integration formulation in
more details, we make some remarks about the mathe-
matical problems concerning the path integral. Despite
the successfully predicting power of Feynman path inte-
gral, it lacks mathematical rigor. Trained as a mathe-
matician, I have difficulty accepting the validity of path
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integral, and for that matter, most of quantum field the-
ory; although as a physicist, I know how to use them and
to wave my hands as necessary, deep down I am deeply
troubled.

To see why path integral is problematic, note that in
Eq.(1), the integration is more appropriately denoted by∫

Γ

Dγ where γ : [ti, tf ]→ Rd is any path connecting the

endpoints γ(ti) = qi and γ(tf ) = qf , and Γ is the space of
such paths. Here Dγ should be thought of as a Lebesgue-
type measure on the space Γ of paths. Unfortunately,
this Lebesgue-type measure simply does not exist. This
follows from the well-known result in functional analy-
sis that a [nontrivial] translational invariance Lebesgue-
type measure cannot be defined on infinite dimensional
Hilbert spaces. However, even before Feynman, there al-
ready exists similar ideas of path integration, albeit it
is formulated to deal with Brownian motion instead of
quantum mechanics. This is the Wiener integral, formu-
lated by American mathematician Norbert Wiener who
made major contributions to stochastic and noise pro-
cesses as well as cybernetics [In fact, the one-dimensional
version of Brownian motion is known as the Wiener pro-
cess, we will return to this later]. Feynman however made
no mention of Wiener’s works in his paper.

The Wiener measure is not translationally invariance,
and one wonders if the Feynman path integral can be
understood in a similar way. It turns out that the answer
is no: in 1960, Cameron proved that it is not possible to
construct “Feynman measure” as a Wiener measure with
a complex variance, i.e. as limit of finite dimensional
approximations of the expression

e
i
~
∫ t
0
m
2 γ̇(s)2dsDγ∫

e
i
~
∫ t
0
m
2 γ̇(s)2dsDγ

(3)

as the resulting measure would have infinite total vari-
ation, even on bounded sets in path space. This is not
the case for the usual Lebesgue measure on Rd, which
has finite total variation on bounded measurable subsets
of Rd. More discussions on the attempts to make math-
ematical sense of the path integral formulation can be
found in the first chapter of [8]. One relatively simple
way to make path integral more sensible is to do a “Wick-
rotation” by analytic continuation and consider instead a
damping factor e−S instead of oscillatory one eiS , where

S =
∫ t

0
dt L(q, q̇). One then gets precisely a Wiener path

integration, which does make sense. After calculation has
been performed, one can then Wick-rotate back and read
off the final answer. Unfortunately, there are subtleties
involved in this approach and not all Feynman path in-
tegrals allow Wick-rotation.

It must be emphasized that Feynman himself was

aware of the lack of rigor in his work, as evidenced from
his paper [5] in which he wrote that:

[...] one feels like Cavalieri must have felt
calculating the volume of a pyramid before the
invention of the calculus.

I often feel that this remark is in a sense too modest.
A more appropriate analogy would be that of calculus in
its early days, more specifically when it was still plagued
by infinitesimals – a very small quantity which is greater
than zero yet less than any positive number, if you will.
Sometimes we still think in this way, especially in physics
(but this is because we already know that if we wish, we
could always make it rigorous). The philosopher Berkeley
was the first one to challenge the foundation of calculus.
He remarked:

They are neither finite quantities nor quan-
tities infinitely small, nor yet nothing. May
we not call them the ghosts of departed quan-
tities?

It was due to criticism like this that finally led to rig-
orous formulation of calculus in terms of ε and δ now
dreaded by beginning mathematics students [7]. Never-
theless, calculus has yielded many amazing results ever
since it was invented by Newton and Leibniz, despite
lacking rigorous foundation until Berkeley’s objection.
This is precisely the state we are currently in for path
integration formulation of quantum mechanics.

III. REVIEW OF PATH INTEGRAL
FORMULATION

In view of the discussion on the mathematical diffi-
culties in interpreting Feynman path integration, we will
make Wick-rotation by setting τ = it/~ and calculate
instead the Euclidean propagator

K(qi, qf ; τ) =

〈
qf

∣∣∣∣(e− τĤN )N ∣∣∣∣ qi〉 (4)

=
〈
qf

∣∣∣e−εĤ · · · e−εĤ ∣∣∣ qi〉 ; ε =
τ

N
(5)

(6)

We can now insert N − 1 copies of the completeness re-
lation ∫

R
dqi |qi〉 〈qi| = 1 (7)

into the propagator and obtain
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K(qi, qf ; t) =

∫
R
dqN−1 · · ·

∫
R
dq1

〈
qf

∣∣∣e−εĤ ∣∣∣ qN−1

〉〈
qN−1

∣∣∣e−εĤ ∣∣∣ qN−2

〉
· · ·
〈
q1

∣∣∣e−εĤ ∣∣∣ qi〉 . (8)

Now each factor〈
qi+1

∣∣∣e−εĤ ∣∣∣ qi〉 =

∫
R
dp
〈
qi+1

∣∣∣e−εĤ ∣∣∣ p〉 〈p|qi〉 (9)

= e−εV (qi)

∫
R
dp e−

εp2

2m

[
e
ip(qi+1−qi)

~

2π~

]
(10)

=
e−εV (qi)

2π~

[√
2πm

ε
e
− (qi+1−qi)

2

(2ε/m)~2

]
(11)

=
1

2π~

√
2πm

ε
e−

m
2ε~2 (qi+1−qi)2e−εV (qi)

(12)

≡ N(ε)eεL, (13)

where

N(ε) ≡ 1

~

√
m

2πε
, (14)

and

L = − m

2~2

(
qi+1 − qi

ε

)2

− 1

2
[V (xi+1) + V (xi)] , (15)

where we have used the mid-point prescription to the po-
tential term discretization. In the second equality above
we have used the fact that

〈x|p〉 =
1√
2π~

e
ipx
~ , (16)

while in the third line we have evaluated the Gaussian-
type integral via the standard formula∫

R
(e−

1
2ax

2+iJx) dx =

√
2π

a
e−

J2

2a . (17)

Hence, with q0 = qi and qN = qf , we have

K(qi, qf , τ) =

∫
R

N−1∏
n=1

dqn

N−1∏
n=0

〈
qn+1

∣∣∣e−εĤ ∣∣∣ qn〉 (18)

=

∫
R

N−1∏
n=1

dqn

N−1∏
n=0

N(ε)eεL(qn+1,qn) (19)

=

∫
R

N−1∏
n=1

dqn

( m

2πε~2

)N
2

eε
∑N−1
n=0 L(xn+1,xn).

(20)

Thus,

K(qi, qf ; τ) ≡
∫
Dqe−S (21)

where

∫
Dq ≡

∫
R

N−1∏
n=1

dqn

( m

2πε~2

)N
2

, (22)

and

S = ε

N−1∑
n=0

m

2~2

(
qn+1 − qn

ε

)2

− ε
N−1∑
n=0

V (qn). (23)

Taking formal limit ε→ 0,

S →
∫ τ

0

m

2~2

(
dq

dτ

)2

+ V (q). (24)

Upon Wick-rotate back to Minkowski time we finally ob-
tain

K =

∫
Dq eiS/~; S =

∫ t

0

[
m

2

(
dq

dt

)2

− V (q)

]
dt (25)

IV. WHERE IS THE COMMUTATION
RELATION HIDING?

We now begin to track down the commutation relation.
This section is based on the useful Appendix A of [9]
as well as on the original paper of Feynman [5]. For
simplicity we first set ~ = 1.

Without loss of generality we can take ti = 0 and tf =
T . Then in the equation

〈qf , T |qi, 0〉 =

∫
dq 〈qf , T |q, t〉 〈q, t|qi, 0〉 . (26)

One may write each of the amplitudes as a path integral
and thus finds
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∫
[dq]

qf ,T
qi,0

ei
∫ T
0
dtL =

∫
dq

∫
[dq]

qf ,T
qi,t e

i
∫ T
t
dt L

∫
[dq]

qf ,t
qi,0

ei
∫ t
0
dt L, T ≥ t ≥ 0. (27)

That is, the path integral on [0, T ] breaks up into separate
path integrals on [0, t] and [t, T ] and an ordinary integral
over q(t).

Consider now a path integral with the additional in-
sertion of a factor of q(t), where 0 < t < T . Then we
have∫

[dq]
qf ,T
qi,0

eiSq(t) =

∫
dq 〈qf , T |q, t〉 q 〈q, t|qi, 0〉 (28)

=

∫
dq 〈qf , T |q̂(t)| q, t〉 〈q, t|qi, 0〉 (29)

= 〈qf , T |q̂(t)| qi, 0〉 . (30)

Therefore we see that: q(t) in the functional inte-
gral translates into q̂(t) in the matrix element. Simi-
larly we can show that for a product of two insertions
q(t)q(t′) [which, being variables of integration, is equal
to q(t′)q(t)], where t, t′ ∈ [0, T ], we have∫

[dq]
qf ,T
qi,0

eiSq(t)q(t′) = 〈qf , T |T [q̂(t)q̂(t′)]| qi, 0〉 , (31)

where T denotes the time-ordered product

T [Â(t)B̂(t′)] = θ(t− t′)Â(t)B̂(t′) + θ(t′ − t)B̂(t)Â(t),
(32)

where θ denotes the Heaviside Step Function. That is,
The order of terms in a matrix operator product corre-
sponds to an order in time of the corresponding factors
in the path integral.

Indeed, due to the way the path integral is constructed
out of successive infinitesimal time slices, two or more in-
sertions in the path integral will always correspond to the
time-ordered product of operators in the matrix element.
Now, the equation of motion is obtained via taking the
functional derivative

δS

δq(t)
= 0. (33)

Indeed, we have, via integration by part,∫
[dq]

qf ,T
qi,0

eiS
δS

δq(t)
F = −i

∫
[dq]

qf ,T
qi,0

[
δ

δq(t)
eiS
]
F (34)

= i

∫
[dq]

qf ,T
qi,0

eiS
δF

δq(t)
. (35)

Thus, for initial state ψt and final state ψf , we have,
upon restoring ~,〈

ψf

∣∣∣∣ δFδqk
∣∣∣∣ψt〉 = − i

~

〈
ψf

∣∣∣∣F δS

δqk

∣∣∣∣ψi〉 . (36)

Therefore, we see that two different functionals may give
the same result for the transition element between any

two states. We say that they are equivalent and symbol-
ize the relation by

− ~
i

δF

δqk

S←→ F
δS

δqk
. (37)

Here the symbol
S←→ emphasizes the fact that functionals

equivalent under one action may not be equivalent under
another. Now, discretizing, we have S =

∑
S(qi+1, qi) so

that

− ~
i

δF

δqk
S←→ F

[
δS(qk+1, qk)

δqk
+
δS(qk, qk−1)

δqk

]
. (38)

This equation is correct to zero and first order in ε. In
this equation hides the Newtonian equations of motion,
as well as the commutation relation.

We recall from the previous section that in the one-
dimensional quantum mechanical problem,

S(qk+1, qk) =
mε

2

[
qk+1 − qk

ε

]2

− εV (qk+1), (39)

so we obtain

δS(qk+1, qk)

δqk
= −m(qk+1 − qk)

ε
, (40)

and

δS(qk, qk−1)

δqk
=
m(qk − qk−1)

ε
− εV ′(qk) (41)

where V ′ is the derivative of the potential, i.e. [minus of]
force. Therefore,

−~
i

δF

δqk
S←→ F

[
−m

(
qk+1 − qk

ε
− qk − qk−1

ε

)
− εV ′(qk)

]
.

(42)
If F does not depend on qk, this gives Newton’s equa-

tions of motion. Since the LHS is now zero, we get, upon
dividing both sides by ε,

0
S←→ −m

ε

(
qk+1 − qk

ε
− qk − qk−1

ε

)
− V ′(qk), (43)

i.e.

V ′(qk)
S←→ −m

ε

[
qk+1 − qk

ε
− qk − qk−1

ε

]
. (44)

In other words, the transition element of mass times ac-
celeration between any two states is indeed equal to the
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transition element of force −V ′(qk) between the same
states.

Now, if F does depend upon qk, say F = qk, then we
get

− ~
i

S←→ qk

[
−m

(
qk+1 − qk

ε
− qk − qk−1

ε

)
− εV ′(qk)

]
.

(45)
Neglecting terms of order ε, one has

m

(
qk+1 − qk

ε

)
qk −m

(
qk − qk−1

ε

)
qk

S←→ ~
i
. (46)

Taking extra care of the time ordering when going back to
operator formulation, this is precisely the commutation
relation

p̂q̂ − q̂p̂ =
~
i
. (47)

V. A WIENER PROCESS APPROACH
TOWARDS NON-COMMUTATIVITY

We now briefly explain another method to extract the
commutation relation out of the path integral, which is
largely based on [10]. Instead of the Feynman’s path in-
tegral, let us considered its Wick-rotated version, inter-
preted as a Wiener integral. Consider the Wiener pro-
cess, which is just a one-dimensional random walk, with
the [Euclidean] action

S = −
∫ (

dq

dt

)2

dt. (48)

The path q(t) is fluctuating, with derivative defined as
the limit of discrete difference:

∆q

∆t
=
q(t+ ε)− q(t)

ε
. (49)

The product qq̇ is actually ambiguous: it depends on the
discretization, so that it can be interpreted as either

q(t)
q(t+ ε)− q(t)

ε
, (50)

or as

q(t+ ε)
q(t+ ε)− q(t)

ε
. (51)

The first corresponds to q̂(t)p̂(t) while the second one
represents p̂(t)q̂(t) since the operator order is the time
ordering as we have previously discussed. From the per-
spective of Stochastic calculus, the velocity is a forward
difference in the Ito sense, and therefore is always slightly
ahead in time.

The difference of the two yields

(q(t+ ε)− q(t))2

ε
. (52)

In ordinary calculus, the difference will go to zero in the
limit ε → 0. However, this is not the case for Stochas-
tic calculus. In particular, the distance a random walk
moves is proportional to

√
t.

[Remark: One way to see this is as follows: The ran-
dom variable dq in a sense, represents an accumulation
of random influences over the interval dt. By the Central
Limit Theorem, dq has a normal distribution. The vari-
ance of a random variable (which is the accumulation of
independent effects over an interval of time) is propor-
tional to the length of the interval, i.e. dt. The standard
deviation of dq is thus proportional to the square root of
dt].

Consequently,

q(t+ ε)− q(t) ∼
√
ε. (53)

This in turn implies that, we have from Eq.(52),

(q(t+ ε)− q(t))2

ε
∼
√
ε
2

ε
= 1, (54)

instead of zero. We thus obtained

[q̂, p̂] = 1, (55)

the Euclidean version of the commutation relation. This
is actually in essence, the consequence of the celebrated
Ito’s Lemma.

Upon Wick-rotating back to Lorentzian signature, we
obtain (~ = 1)

[q̂, p̂] = i (56)

in quantum mechanics.

We remark that the equalities obtained in Eq.(55) and
Eq.(56) are actually only weak equality : they are valid
only in the sense the of sense of distributions. For a
Brownian motion, the result is actually saying that the
position is correlated with the [infinite] value of the ve-
locity [since the paths are actually continuous but non-
differentiable, which is clear from Eq.(53), since the ratio
that defines the derivative will diverge in the limit ε→ 0],
so that the future position is actually finitely correlated
with the average velocity given the past position. The
past value is of course completely uncorrelated with the
current [forward] velocity.

VI. CONCLUSION

We conclude by merely emphasizing that discretiza-
tion is crucial in the path integral formulation, for it is
via careful analysis on the discretization that one can re-
cover the commutation relation [q̂, p̂] = i~ of quantum
mechanics.
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