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Chapter 1

Global Symmetries

1.1 Groups

We start with a set of elements G together with a rule (called multiplica-
tion) for combining two elements to get a third. The name of the resulting
algebraic structure depends on the properties of the multiplication law. If
the multiplication is associative, (g1g2)g3 = g1(g2g3) = g1g2g3, then G is
called a semigroup. If we also require an identity element 1 ∈ G such that
1 · g = g = g · 1 ∀g ∈ G, then G becomes a monoid. Finally, the existence
of inverse elements g−1 for every element such that gg−1 = 1 = g−1g ∀g ∈ G
makes G into a group. The group multiplication law is not necessarily com-
mutative, but if it is then the group is said to be Abelian. Because groups
are closely related to symmetries, and symmetries are very useful in physics,
groups have come to play an important role in modern physics.

Groups can be defined as purely abstract algebraic objects. For example,
the group D3 is generated by the two elements x and y with the relations
x3 = 1, y2 = 1, and yx = x−1y. We can systematically list all the elements:
D3 = {1, x, x2, y, xy, x2y}. We should check that this list is exhaustive,
namely that all inverses and any combination of x and y appears in the list.
Using the relations we see that x−1 = x2 and y−1 = y, so yx = x−1y = x2y, all
of which are already in the list. What about yx2? The order of a group is the
number of elements it contains and is sometimes written |G|. We see that D3

is a group of order 6, i.e. |D3| = 6. This is a specific example of a dihedral
group Dn which is defined in general as the group generated by {x, y} with
the relations xn = 1, y2 = 1, and yx = x−1y. We can systematically list the
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2 CHAPTER 1. GLOBAL SYMMETRIES

Figure 1.1: (a) An equilateral triangle; (b) the same triangle with labels.

elements: Dn = {1, x, x2, . . . , xn−1, y, xy, x2y, . . . , xn−1y}. You should prove
that Dn has order 2n.

Exercise 1 The symmetric group Sn is the set of permutations of the in-
tegers {1, 2, . . . , n}. Is Sn Abelian? Determine the order of Sn (feel free to
start with simple cases of n = 1, 2, 3, 4). Note that |S3| = |D3|. Are they the
same group (isomorphic)?

1.1.1 Realizations and Representations

The previous example showed how a group can be defined in the abstract.
However, groups often appear in the context of physical situations. Consider
the rigid motions (preserving lengths and angles) in the plane that leave an
equilateral triangle (shown in Figure 1.1(a)) unchanged. To keep track of
what’s going on, we will need to label the triangle as shown in Figure 1.1(b).

One rigid motion is a rotation about the center by an angle 2π
3

in the
counter-clockwise direction as shown in Figure 1.2(a). Let’s call such a trans-
formation R for “rotation”. We say that R is a symmetry of the triangle
because the triangle is unchanged after the action of R. Another symmetry
is a reflection about the vertical axis, which we can call F for “flip”. This is
shown in Figure 1.2(b).

Both R and F can be inverted, by a clockwise rotation or another flip,
respectively. Clearly combinations of Rs and F s are also symmetries. For
example, Figure 1.3(a) shows the combined transformation FR in the top
panel, whereas the lower panel (b) shows the transformation R2F . Note that
our convention is that the right-most operation is done first.
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Figure 1.2: (a) R, a counter clockwise rotation by 2π
3

; (b) and the “flip” F ,
a reflection about the vertical axis (b).

Figure 1.3: (a) The combined transformation FR; (b) the transformation
R2F .
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These examples show that transformations on a space can naturally form
a group. More formally, a group realization is a map from elements of G
to transformations of a space M that is a group homomorphism, i.e. it
preserves the group multiplication law. Thus if T : G → T (M) : g 7→ T (g)
where T (g) is some transformation on M , then T is a group homomorphism
if T (g1g2) = T (g1)T (g2). From this you can deduce that T (1) = I where I is
the identity (“do nothing”) transformation on M , and T (g−1) = (T (g))−1 =
T−1(g).

Let’s go back to the symmetries of our triangle. You probably noticed
that R3 = I and F 2 = I, which bears striking similarities to D3. In fact,
with T (x) = R and T (y) = F , it isn’t hard to prove that T is a realization of
D3. One important thing to check is whether T (yx) = T (y)T (x) = FR and
T (x−1y) = T−1(x)T (y) = R−1F = R2F are the same. But this is exactly
what we showed in Figure 1.3.

In this example the map T : D3 → Symmetries(4) is bijective (one-
to-one and onto) so in addition to being a homomorphism it is also an
isomorphism. Such realizations are often called faithful because every
different group element gets assigned to a different transformation. How-
ever, realizations do not need to be faithful. Consider the homomorphism
T ′ : D3 → Symmetries(4) where T ′(x) = I and T ′(y) = F . Then T ′(yx) =
T ′(y)T ′(x) = FI = F and T ′(x−1y) = T ′(x2y) = I2F = F . Thus the
group relations and multiplication still hold so we have a realization, but it
is definitely not an isomorphism.

Exercise 2 Consider the map T ′′ : D3 → Symmetries(4) where T ′′(x) = R
and T ′′(y) = I. Is T ′′ is a realization?

Exercise 3 A normal subgroup H ⊂ G is one where ghg−1 ∈ H for all
g ∈ G and h ∈ H. Both T ′ and T ′′ map a different subgroup of D3 to the
identity. Are those normal subgroups? In this context, why is the concept of
normal subgroup useful?

Physicists are usually interested in the special class of realizations where
M is a vector space and the T (g) are linear transformations. Such realizations
are called representations.1 A vector space V is an Abelian group with

1A warning about terminology: Technically the representation is defined as the map
(homomorphism) between G and transformations on a vector space. However, often the
term “representation” is used to refer to the vector space on which the elements T (g) act,
and sometimes even to the linear transformations T (g) themselves.
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elements |v〉 called vectors and a group operation “+”, and it possesses a
second composition rule with scalars α which are elements of a field F (like
R or C) such that α|v〉 ∈ V for all α ∈ F and all |v〉 ∈ V . Further we have
the properties:

i) (αβ)|v〉 = α(β|v〉)

ii) 1 ∈ F is an identity: 1|v〉 = |v〉

iii) (α + β)|v〉 = α|v〉+ β|v〉 and α(|v〉+ |w〉) = α|v〉+ α|w〉.

A linear transformation on a vector space V is a map T : V → V such that
T (α|v〉+ β|w〉) = αT (|v〉) + βT (|w〉). Linear algebra is essentially the study
of vector spaces and linear transformations between them. This is important
for us because soon we will see how quantum mechanics essentially boils down
to linear algebra. Thus the study of symmetry groups in quantum mechanics
becomes the study of group representations. But first we should look a some
simple examples of representations.

Consider the parity group P = {x : x2 = 1}, also known as Z2, the cyclic
group of order 2. The most logical representation of P is by transformations
on R where T (x) = −1. Clearly T (x2) = T (x)T (x) = (−1)2 = 1 so this forms
a faithful representation. We could also study the trivial representation
where T ′(x) = 1. Again, T ′(x2) = T ′(x)2 = 12 = 1, so the group law is
preserved, but nothing much happens with this representation, so it lives up
to its name.

The dimension of a representation refers to the dimension of the vector
space V on which the linear transformations T (g) act, not to be confused with
the order of the group. Let’s now consider a two-dimensional representation
of P . Take R2 with basis |m〉, |n〉 and let T2(x)|m〉 = |n〉 and T2(x)|n〉 = |m〉.
You can check that T2(x

2) = (T2(x))2 = I because it takes |m〉 → |n〉 → |m〉
and |n〉 → |m〉 → |n〉. In terms of matrices we have:

T2(x) =

(
0 1
1 0

)
and T2(1) =

(
1 0
0 1

)
(1.1)

and you can check that T2(x)2 = I in terms of matrices as well.

Something interesting happens if we change the basis of the vector space
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to |µ〉 = 1√
2
(|m〉+ |n〉) and |ν〉 = 1√

2
(−|m〉+ |n〉). Then

T2(x)|µ〉 =
1√
2
(T2(x)|m〉+ T2(x)|n〉) =

1√
2
(|n〉+ |m〉) = |µ〉

T2(x)|ν〉 =
1√
2
(−T2(x)|m〉+ T2(x)|n〉) =

1√
2
(−|n〉+ |m〉) = −|ν〉

This new basis yields a new representation of P , call it T ′
2. The matrices

corresponding to the |µ〉, |ν〉 basis are:

T ′
2(x) =

(
1 0
0 −1

)
and T ′

2(1) =

(
1 0
0 1

)
. (1.2)

Of course, since T2 and T ′
2 are related by a change of basis their matrices are

related by a similarity transformation, T2(g) = ST ′
2(g)S−1 and they aren’t

really different in any substantial way. Representations related by a change
of basis are called equivalent representations.

Another thing to notice about T ′
2 is that all the representatives (i.e. both

matrices) are diagonal. This means that the two basis vectors |µ〉 and |ν〉 are
acted upon independently, so they each can be considered as separate one-
dimensional representations. In fact, the representation on |µ〉 is none other
than the trivial representation, T ′, and the representation on |ν〉 is the same
as our faithful representation T above. A representation that can be sepa-
rated into representations with smaller dimensions is said to be reducible.
In general, a representation will be reducible when all of its matrices can be
simultaneously put into the same block diagonal form:

Tn+m+p(g) =

 T1(g)
T2(g)

T3(g)

 }n×n

}m×m

}p×p

. (1.3)

Then each of the smaller subspaces are acted on by a single block and give a
representation of the group G of lower dimension. Because larger represen-
tations can be built up out of smaller ones, it is sensible to try to classify the
irreducible representations of a given group.

Exercise 4 Can you construct an irreducible 2-dimensional representation
of the parity group P? Can you construct a nontrivial 3-dimensional repre-
sentation of P? If you can, is it irreducible?
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1.2 Lie Groups and Lie Algebras

Now we come to our main example, that of rotations. In R3 rotations about
the origin preserve lengths and angles so they can be represented by 3 × 3
(real) orthogonal matrices. If we further specify that the determinant be
equal to one (avoiding inversions) then we have the special orthogonal
group called SO(3):

SO(3) = {O ∈ 3× 3 matrices : O† = O−1 and detO = 1}. (1.4)

For real matrices like we have here, the Hermitian conjugate, O† = (O∗)T

is equal to the transpose, OT , so I’ve chosen to use the former for later
convenience. We can verify that this is a group by checking (O1O2)

† =
O†

2O
†
1 = O−1

2 O−1
1 = (O1O2)

−1 and det(O1O2) = detO1 detO2 = 1 · 1 = 1.
Here our definition of the group is made in terms of a faithful representation.
SO(3) has two important features: it is a continuous group and it is not
commutative. We will discuss these properties in turn.

Exercise 5 Prove that orthogonal transformations on R3 do indeed preserve
lengths and angles.

Exercise 6 Does the set of general n×n matrices form a group? If so, prove
it. If not, can you add an additional condition to make it into a group.

1.2.1 Continuous Groups

Rotations about the z-axis are elements (in fact, a subgroup) of SO(3). Since
we can imagine rotating by any angle between 0 and 2π it is clear that there
are an infinite number of rotations about the z-axis and hence an infinite
number of elements in SO(3). We can write the matrix of such a rotation as

Tz(θ) =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 (1.5)

demonstrating how such a rotation can be parameterized by a continuous
real variable. It turns out that you need 3 continuous parameters to uniquely
specify every element in SO(3). (These three can be thought of as rotations
about the 3 axes or the three Euler angles.) Because of the continuous
parameters we have some notion of group elements being close together.
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Such groups have the additional structure of a manifold and are called Lie
groups.

A manifold is a set of point M together with a notion of open sets (which
makes M a topological space) such that each point p ∈ M is contained in an
open set U that has a continuous bijection ϕ : U → ϕ(U) ⊂ Rn. Thus an
n-dimensional manifold is a space where every small region looks like Rn. If
all the functions ϕ are differentiable then you have a differentiable manifold.2

A Lie group is a group that is also a differentiable manifold.
Our main example of SO(3) is in fact a Lie group. We already know how

to deal with its group properties since matrix multiplication reproduces the
group multiplication law. But what kind of manifold is SO(3)?

We will begin to answer this question algebraically. More generally,
SO(n) consists of n × n real matrices with O†O = I and detO = 1. A
general n× n real matrix has n2 entries so is determined by n2 real param-
eters. But the orthogonality condition gives n(n+1)

2
constraints (because the

condition is symmetric, so constraining the upper triangle of the matrix au-
tomatically fixes the lower triangle). Since any orthogonal matrix must have
detO = ±1, the constraint for a positive determinant only eliminates half
of the possibilities but doesn’t reduce the number of continuous parameters.
Thus a matrix in SO(n) will be specified by n2− n(n+1)

2
= n(n−1)

2
. Thus SO(3)

is specified by 3 parameters and is therefore a 3-dimensional manifold.
Knowing the dimension is a start, but we can learn more by using geomet-

ric reasoning. Let’s specify a rotation about an axis by a vector along that
axis with length in the range [0, π] corresponding to the counter-clockwise
angle of rotation about that axis. The collection of all such vectors is a solid,
closed ball of radius π in R3, call it D3 (for “disk). However, a rotation by π
about some axis ~n is the same as a rotation by π about −~n. So to take this
into account we need to specify that opposite points on the surface of ball
are actually the same. If this identification is made into a formal equivalence
relation ∼ then we have SO(3) ∼= D3/∼. So as a manifold SO(3) can be vi-
sualized as a three-dimensional solid ball with opposite points on the surface
of the ball identified. As a preview of what is to come, note that this shows
that SO(3) is not simply connected.

Exercise 7 What is the relationship between SO(3) and the 3-dimensional

2For a general abstract manifold the definition of differentiable is that for two overlap-
ping regions Ui and Uj with corresponding maps ϕi and ϕj the composition ϕi ◦ ϕ−1

j :
Rn → Rn is infinitely differentiable.
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unit sphere, S3?

Exercise 8 Does the set of general n× n matrices form a manifold? If so,
what is its dimension? If not, can you add an additional condition to make
it into a manifold?


