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Nature and Nature’s laws lay hid in night:
God said, “Let Newton be!” and all was light. — Alexander Pope

I. INTRODUCTION

When it comes to the relation between Lorentz group and Galilean group, one can’t stop but to nag about the
limit c → ∞ would “contract” (whatever it means) the former to the latter. Now let’s take a quick glance upon the
Lorentz algebra:

[Ji, Jj ] = iεijkJk,

[Ji,Kj ] = iεijkKk,

[Ki,Kj ] = −iεijkJk, (1)

and the Galilean group:

[Ji, Jj ] = iεijkJk,

[Ji,Kj ] = iεijkKk,

[Ki,Kj ] = 0. (2)

Wait, where is c? There is no such thing as light in them! Then what do we mean by taking the limit c→∞?
Admittedly, there is some technical problems in saying “taking the limit c→∞ of the group”. There is no c in the

algebra nor the group, but only when one talks about the representation does the light come out.
For example, consider a (1+1) dimensional Lorentz group realized on the vector space (x, ct):

Λ(v) =
(
γ γ vc
γ vc γ

)
, (3)

where γ = 1/
√

1− v2/c2. Aha! Here is the c we’ve been looking for! However, life is never easy. If we naively take
the c→∞ limit, then

Λ∞(v) =
(

1 0
0 1

)
. (4)

Oops, it’s a catastrophe: the representation becomes trivial. It’s not the faithful Galilean group representation we
expected. Fortunately, we have a way to save it. Apply a c-dependent similar transformation

C =
(
c 0
0 1

)
(5)

on Λ(v) and then take the c→∞ limit:

Cλ(v)C−1 →
(

1 v
0 1

)
. (6)

Bingo! This is the faithful representation of Galilean group.
The above example makes it clear that there is always some ambiguities in taking the contraction limit of a

representation of a group. It is then desirable to develop a systematic and representation-independent procedure for
the contraction. This is the Wigner-İnönü Contraction[1][2].
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II. FORMAL DEVELOPMENT

Consider an algebra {Xi} with the commutator:

[Xi, Xj ] = ic k
ij Xk. (7)

If one subjects the Xi to a nonsingular transformation U , one obtains new operators Yi:

Yi = U j
i Xj , (8)

which still generate the original group but with the new structure constant given by

C k
ij = U m

i U n
j c l

mn

(
U−1

) k
l
. (9)

What if U is singular? Then the group generated by Yi will no longer be the same. Consider a U which depends
on ε in the following form:

U =
(

1 0
0 ε

)
, (10)

where 1 and ε are understood as r × r and (n− r)× (n− r) matrices, respectively. Apparently, U becomes singular
when ε = 0, and it is this limit we want to exploit, which we call “contraction”.

Before moving on, it is useful to divide two kinds of indices, 1µ and 2λ, which stands for the first r indices and the
remaining part. (1 and 2 are not additional indices; they are here to remind you that they are of different divisions.)
With this specific form for U , Eq.[8] becomes

Y1µ = X1µ, µ = 1 ∼ r,
Y2λ = εX2λ, λ = r + 1 ∼ n. (11)

The contraction limit doesn’t necessarily exist for any kinds of c k
ij . In fact, from the analysis in the reference, the

sufficient and necessary condition for the contraction to exist is

c 2λ
1µ1ν = 0, (12)

i.e., X1µ’s form a subalgroup, called H. Furthermore, the new structure constants from the transformation Eq.[10]
given by Eq.[9], together with the requirement Eq.[12], read

C 1κ
1µ1ν = c 1κ

1µ1ν , C 2λ
1µ1ν = c 2λ

1µ1ν = 0, (13)

C 1κ
1µ2λ = 0, C 2λ

1µ2σ = c 2λ
1µ2σ, (14)

C 1µ
2λ2σ = C 2δ

2λ2σ = 0. (15)

Eq.[13] says Y1µ’s generate an invariant subgroup, while Eq.[14] and Eq.[15] say that Y2λ’s form an abelian invariant
subgroup. The result can be summarized as two theorems:

Theorem1 Given a Lie group G, the contraction could take place if and only if there exists a nontrivial subgroup
H. The algebra for H remains fixed under contraction, while the remaining contracted algebra generates an abelian
invariant subgroup, called N , of the contracted group G′. Furthermore, G′ is the semidirect product of N and H, or
equivalently, H ' G′/N .

Theorem2 Conversely, the necessary condition for a group G′ to be derivable from another group by contraction is
the existence in G′ of an abelian invariant subgroup N and subgroup H such that G′ is the semidirect product of them.

These are the main theorems in this note. The proof is omitted. It indicates the close connection between the
semidirect product and the group contraction. Let’s see some examples below.
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III. EXAMPLES

Example 1 Consider the SO(3) group algebra :

[X1, X2] = iX3, (16)
[X2, X3] = iX1, (17)
[X3, X1] = iX2. (18)

Now take the SO(2) group generated by X3 as the invariant subgroup H. If one applies the ε-dependent similar
transformation U in Eq.[10], the new generators Yi’s are

Y1 = εX1, (19)
Y2 = εX2, (20)
Y3 = X3. (21)

Take the contraction limit ε→ 0, the new algebra for Yi’s then reads

[Y1, Y2] = ε2[X1, X2] = iε2Y3 → 0, (22)
[Y2, Y3] = ε[X2, X3] = iY1, (23)
[Y3, Y1] = ε[X3, X1] = iY2. (24)

This is just the algebra for ISO(3), and the abelian invariant subgroup N is the two dimensional translation group
generated by Y1 and Y2. Conclusion: SO(3) is contracted to ISO(2).

This example has a simple physical explanation: At first the symmetry at hand is SO(3), but if one restricts two
kinds of rotation, X1 and X2, only to their infinitesimal version, Y1 and Y2, then they “look like” translations in the
contraction limit. Together with the unaltered generator X3 = Y3, Yi’s form a ISO(2) group.

Example 2 Recall the original problem we tackled with: the Lorentz group and the Galilean group, Eq.[1]
and Eq.[2]. Now the invariant subgroup H is taken to be the SO(3) rotation group, generated by Ji, and the boost
generators are contracted. Namely,

J ′i = Ji, (25)

K ′i = εKi ≡
1
c
Ki. (26)

Now, put the new generators into the commutators and take the contraction limit c → ∞, we obtain the Galilean
algebra, Eq.[2]. Note how the c comes out: it is the contraction parameter that controls the singular nature of U .
Apparently, this procedure is representation-independent, and we are free from the ambiguity when tackling with the
contraction of representation.

Example 3 As a final example, consider the de Sitter group SO(4,1):

[JAB , JCD] = i
(
ηACJBD − ηBCJAD − (C ↔ D)

)
, A,B,C,D = 0 ∼ 4, (27)

where ηAB = diag(−1, 1, 1, 1, 1). If we separate the J4µ’s generators, the commutators become

[Jµν , Jρσ] = i (ηµρJνσ − ηνρJµσ − (ρ↔ σ)) , (28)

[J4µ, Jρσ] = i
(
ηµσJ4ρ − ηµρJ4σ

)
, (29)

[J4µ, J4ν ] = iJµν , µ, ν, ρ, σ = 0 ∼ 3. (30)

Then apply the transformation

Pµ = εJ4µ ≡ 1
L
J4µ, (31)

where L is the contraction parameter, the size of the universe. Taking the contraction limit L→∞, de Sitter group
becomes the Poincaré group:

[Jµν , Jρσ] = i (ηµρJνσ − ηνρJµσ − (ρ↔ σ)) , (32)
[Pµ, Jρσ] = i (ηµσP ρ − ηµρPσ) , (33)
[Pµ, P ν ] = 0. (34)
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Note that the original nonabelian invariant subalgebra Eq.[30] becomes abelian invariant subalgebra Eq.[34] under
contraction. Physically, this means that any infinitesimal group transformation commutes with each other.
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