
9 Quantum Field Theory for Children

The theories (known and hypothetical) needed to describe the (very) early universe
are quantum field theories (QFT). The fundamental entities of these theories are
fields, i.e., functions of space and time. For each particle species, there is a cor-
responding field, having at least as many (real) components ϕi as the particle has
internal degrees of freedom. For example, for the photon, the corresponding field
is the vector field Aµ = (A0, A1, A2, A3) = (φ, ~A), the 4-vector potential, already
familiar from electrodynamics. The photon has two internal degrees of freedom.
The larger number of components in Aµ is related to the gauge freedom of electro-
dynamics.

In classical field theory the evolution of the field is governed by the field equation.
Quantizing a field theory gives a quantum field theory. Particles are quanta of the
oscillations of the field around the minimum of its potential. The field value at the
potential minimum is called the vacuum. Up to now, we have described the events in
the early universe in terms of the particle picture. However, the particle picture is not
fundamental, and can be used only when the fields are doing small oscillations. For
many possible events and objects in the early universe (inflation, topological defects,
spontaneous symmetry breaking phase transitions) the field behavior is different, and
we need to describe them in terms of field theory. In some of these topics classical
field theory is already sufficient for a reasonable and useful description.

9.1 Zero-Temperature Field Theory

In this section we discuss “zero-temperature” field theory in Minkowski space, i.e.,
we forget high-temperature effects and the curvature of spacetime.

The starting point in field theory is the Lagrangian density L(ϕi, ∂
µϕi). The

simplest case is the scalar field ϕ, for which

L = −1

2
∂µϕ∂

µϕ− V (ϕ) . (1)

Here V (ϕ) is the potential of the field. If

V (ϕ) =
1

2
m2ϕ2 , (2)

the particle corresponding to the field ϕ will have mass m. In general, the mass of
the particle is given by m2 = V ′′(ϕ). We write

V ′(ϕ) ≡ dV

dϕ
and V ′′(ϕ) ≡ d2V

dϕ2
. (3)

The particles corresponding to scalar fields are spin-0 bosons. Spin-1

2
particles

correspond to spinor fields and spin-1 particles to vector fields.
The field equation is obtained from the Lagrangian by minimizing (or extremiz-

ing) the action
∫

Ld4x , (4)

which leads to the Euler–Lagrange equation

∂L
∂ϕi(x)

− ∂µ
∂L

∂[∂µϕi(x)]
= 0 . (5)
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For the above scalar field we get the field equation

∂µ∂
µϕ− V ′(ϕ) = 0 . (6)

For a massless noninteracting field, V (ϕ) = 0, and the field equation is just the wave
equation

∂µ∂
µϕ = −ϕ̈+ ∇2ϕ = 0 . (7)

The Lagrangian also gives us the energy tensor

T µν = − ∂L
∂(∂µϕ)

∂νϕ+ gµνL . (8)

For the scalar field

T µν = ∂µϕ∂νϕ− gµν
[1

2
∂ρϕ∂

ρϕ+ V (ϕ)
]

. (9)

In particular, the energy density and pressure of a scalar field are

ρ = T 00 =
1

2
ϕ̇2 +

1

2
∇ϕ2 + V (ϕ) (10)

p =
1

3

(

T 11 + T 22 + T 33
)

=
1

2
ϕ̇2 − 1

6
∇ϕ2 − V (ϕ) . (11)

(We are in Minkowski space, so that gµν = diag(−1, 1, 1, 1)).
Interactions between particles of two different species are due to terms in the

Lagrangian which involve both fields. For example, in the Lagrangian of quantum
electrodynamics (QED) the term

−ieψ†γ0γµAµψ (12)

is responsible for the interaction between photons (Aµ) and electrons (ψ). (The γµ

are Dirac matrices). A graphical representation of this interaction is the Feynman
diagram

A higher power (third or fourth) of a field, e.g.,

V (ϕ) =
1

4
λϕ4 , (13)



9 QUANTUM FIELD THEORY FOR CHILDREN 103

Figure 1: Potential giving rise to spontaneous symmetry breaking.

represents self-interaction. In QCD, gluons have this property.
Some theories exhibit spontaneous symmetry breaking (SSB). For example, the

potential

V (ϕ) = V0 −
1

2
µ2ϕ2 +

1

4
λϕ4 (14)

has two minima, at ϕ = ±σ, where σ = µ/
√
λ. At low temperatures, the field

is doing small oscillations around one of these two minima (see Fig. 1). Thus the
vacuum value of the field is nonzero. If the Lagrangian has interaction terms, cϕψ2,
with other fields ψ, these can now be separated into a mass term, cσψ2 and an
interaction term, by redefining the field ϕ as

ϕ = σ + ϕ̃ ⇒ cϕψ2 = cσψ2 + cϕ̃ψ2 . (15)

Thus spontaneous symmetry breaking gives the ψ particles a mass
√

2cσ. This kind
of a field ϕ is called a Higgs field. In electroweak theory the fermion masses are due
to a Higgs field.

9.2 High Temperature QFT

The material in subsections 9.2 and 9.3 is not needed in the rest of the course.
They were meant as preparation for topics (QCD phase transition, electroweak phase
transition, grand unified theories, topogical defects), that have now been dropped from
the course. Thus you can skip these sections.

When the temperature is comparable to (or larger than) the energy scale of the
theory1, thermodynamic effects become important. The values around which the
fields fluctuate are no more those which minimize the energy (the minimum of the
potential V (ϕ)), but rather those which minimize the free energy (the thermody-
namic potential).

1The energy scale is given by the constants in the Lagrangian, such as the m, µ, and λ in
Eqs. (2),(13), and (14).
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From thermodynamics we have the relation

F = E − TS (16)

relating the free energy F , the energy E, the temperature T , and the entropy

S ≡ −
(

∂F

∂T

)

. (17)

In thermal QFT the thermodynamic variables are the field values ϕ = 〈ϕ〉 (their
expectation values at local thermal equilibrium) and the temperature T . The free
energy density is called the effective potential V (ϕ, T ). It is related to the energy
density ρ by

V (ϕ, T ) = ρ(ϕ, T ) − Ts(ϕ, T ), (18)

where

s(ϕ, T ) ≡ −∂V (ϕ, T )

∂T
(19)

is the entropy density.
We shall not discuss how the effective potential is calculated. For example, for

the symmetry breaking scalar field whose classical potential is

V (ϕ) = V0 −
1

2
µ2ϕ2 +

1

4
λϕ4 , (20)

the effective potential is

V (ϕ, T ) = V (ϕ) +
1

24
m2(ϕ)T 2 − π2

90
T 4 + quantum corrections , (21)

when T ≫ m. Here
m2(ϕ) = V ′′(ϕ) = −µ2 + 3λϕ2 . (22)

For the energy density of this scalar field we thus get

ρ(ϕ, T ) = V (ϕ, T ) − T
∂V (ϕ, T )

∂T

= V (ϕ) − 1

24
m2(ϕ)T 2 +

π2

30
T 4 + q.c.

(23)

We recognize the term (π2/30)T 4, the energy density of spin-0 bosons at T ≫ m.
Comparing to the T = 0 energy density of a classical scalar field,

ρ = V (ϕ) +
1

2
ϕ̇2 +

1

2
∇ϕ2 , (24)

we notice that the gradient terms 1

2
ϕ̇2 + 1

2
∇ϕ2 are missing. This is because now ϕ

represents the expectation value of the field, which is assumed homogeneous because
we are describing a system in thermal equilibrium. The contribution to the energy
from the fluctuations of the field around this equilibrium value is now represented
in a statistical manner by the temperature-dependent terms instead of the gradient
terms which assume a particular field configuration.

Often it makes sense to separate from each other the slow, large-scale, “classical”
behavior of the field ϕ, and the microscopic fluctuations of the field, over which “we
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Figure 2: Separating out the large and small scales.

have integrated” and whose average effect is represented by the effective potential
V (ϕ, T ). See Fig. 2. Then, in this large-scale view, T and ϕ may be inhomogeneous
and time-dependent, but locally we assume thermal equilibrium, represented by the
local values of T and ϕ. Then the large-scale behavior of the field is described by
the field equation

∂µ∂
µϕ− ∂V (ϕ, T )

∂ϕ
= 0 , (25)

where the potential V (ϕ) has now been replaced by the effective potential. This
equation includes the small-scale quantum and thermal effects only in an average
sense, and does not therefore describe random events possibly caused by these fluc-
tuations.

9.3 Phase transitions

Let us now consider a system with spontaneous symmetry breaking. When T → 0,
V (ϕ, T ) → V (ϕ), and the system settles into ϕ = ±σ. As the temperature becomes
higher, the shape of V (ϕ, T ) as a function of ϕ changes, and at a sufficiently high
temperature, T > Tc, the minimum of the effective potential is at ϕ = 0, and the
system settles into a symmetric state ϕ = 0. We call this a phase transition from
the broken phase to the symmetric phase.

In the early universe, the temperature was high, and the universe was in the
symmetric phase. As the temperature fell below the critical temperature Tc the
universe underwent a phase transition to the broken phase.

Such a phase transition can be either first or second order.
In a first-order phase transition the effective potential has two (local) minima at

a temperature range (T−, T+), the true vacuum or the global minimum and the false
vacuum. See Fig. 3. At the critical temperature Tc, (T− < Tc < T+), the effective
potential has the same value in both minima. When the temperature falls below
Tc the field ϕ would like to be in the minimum corresponding to the broken phase,
ϕ = ϕb(T ), but it has to remain some time in the symmetric phase, ϕ = 0, because
there is a potential barrier separating the two minima. The state ϕ = 0 is now
metastable. We say that the system is supercooled. The field gets over the barrier by
thermal fluctuation or through it by quantum tunneling, which are random events
occurring in different places at different times. When this happens at some small
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Figure 3: The effective potential for a first-order phase transition.

region, we say that a bubble of the broken phase has nucleated. A bubble is a field
configuration where the field is at ϕ = ϕb(T ) at center and at ϕ = 0 further out.
See Fig. 4. After the nucleation the field evolution can again be described by the
field equation. At the phase boundary (the bubble wall) the field moves from the
symmetric phase to the broken phase and the bubble grows. As old bubbles grow
and new bubbles are nucleated, the broken phase gradually takes over.

In a first-order phase transition it takes a significant amount of time to convert
the whole universe from the old phase to the new phase, because the expansion of
the universe has to make space for the latent heat

L ≡ ρs(Tc) − ρb(Tc) (26)

Figure 4: Field configuration for a bubble in a first-order phase transition.
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Figure 5: The effective potential for a second-order phase transition.

released in the phase transition. Here

ρs(T ) = ρ(0, T )

ρb(T ) = ρ(ϕb(T ), T )
(27)

are the energy densities of the two phases. Since

ρ(ϕ, T ) = V (ϕ, T ) + Ts(ϕ, T ) = V (ϕ, T ) − T
∂V

∂T
(28)

and at the critical temperature V (0, Tc) = V (ϕb, Tc), we find that

L = Tc

[

∂V

∂T
(ϕb, Tc) −

∂V

∂T
(0, Tc)

]

. (29)

In a second order phase transition there are no metastable states. When T > Tc,
the only local minimum is ϕ = 0, and for T < Tc it is no longer a minimum.
See Fig. 5. The broken minimum ϕb(T ) exists only for T < Tc and for T → Tc,
ϕb(T ) → 0. For a second-order phase transition the latent heat is zero, and the
transition takes place instantaneously.

The effective potential of the symmetry breaking scalar field described above
(Eqs. 20 and 21) is

V (ϕ, T ) = V0 −
1

2
µ2ϕ2 +

1

4
λϕ4 − 1

24
µ2T 2 +

1

8
λϕ2T 2 − π2

90
T 4 (30)

(ignoring quantum corrections). We find the local minima from the condition

∂V

∂ϕ
= 0 ⇒







ϕ = 0 (symmetric phase)

ϕ = ϕb =

√

µ2

λ
− 1

4
T 2 (broken phase) .

(31)
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The mass of the Higgs particle is given by

m2
b(T ) =

∂2V

∂ϕ2
(ϕb, T ) (32)

in the broken phase and by

m2
s (T ) =

∂2V

∂ϕ2
(0, T ) = −µ2 +

1

4
λT 2 (33)

in the symmetric phase. (If we are at a minimum, these expressions are positive.)
Exercise: Show that this leads to a second-order phase transition.


