====== The Variational Problem ====== The core idea of this problem is to find a function that is a stationary point for a certain process, expresed as an integral [[basic_tools:variational_calculus:functional|functional]], this means that we need to set the [[basic_tools:variational_calculus:functional_derivative|functional derivative]] of the integral to zero. $$ 0 = \delta S[q|\phi] = \frac{\partial}{\partial \varepsilon} \int_a^b F\circ \Gamma(q+\varepsilon \phi) dt = \int_a^b \frac{\partial}{\partial \varepsilon} F(q+\varepsilon \phi, \dot q+\varepsilon \dot\phi)dt = $$ $$ \int_a^b \frac{\partial F}{\partial q}\phi + \frac{\partial F}{\partial \dot q}\dot\phi dt = \left[\frac{\partial F}{\partial \dot q}\phi\right]^b_a + \int_a^b \left(\frac{\partial F}{\partial q} - \frac{d}{dt}\frac{\partial F}{\partial \dot q}\right)\phi dt $$ We haven't made made any assumption of the form of $q$ and the space $\Omega$ where it resides. On the standard variational problem $\Omega$ is the space of the functions that $q(a)=q_a$ and $q(b)=q_b$, i.e, **fixed boundaries**, and are sufficiently smooth. Also, we asumed a standart lift: $\Gamma(q) = (q, \dot q)$. Saying that, now the [[basic_tools:variational_calculus:fundamental_lemma|fundamental lemma of variational calculus]] enters. The variation, $\phi$, is arbitrary but with $\phi(a)=\phi(b)=0$. The later assertion, makes the term outside the integral zero. On the other hand, by the fundamental lemma, the interior parentheisi is zero, giving: $$ \frac{\partial F}{\partial q} - \frac{d}{dt}\frac{\partial F}{\partial \dot q} = 0 $$ that is, the [[equations:euler_lagrange_equations|Euler-Lagrange equations]]. __** Some variations worth studying**__ 1. Change $\Omega$: the functions do not need to be continous at all points, this gives collisions on a variational setting. 2. Variable end points, i.e. $a$ and $b$ vary with $\varepsilon$ 3. Change the interdependencies of the lift $\Gamma$. This will lead to Vakonomic Mechanics.